If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2=20n+24
We move all terms to the left:
4n^2-(20n+24)=0
We get rid of parentheses
4n^2-20n-24=0
a = 4; b = -20; c = -24;
Δ = b2-4ac
Δ = -202-4·4·(-24)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-28}{2*4}=\frac{-8}{8} =-1 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+28}{2*4}=\frac{48}{8} =6 $
| X/2=6x | | x=(x+140)=(3x-20) | | X÷2=6x | | x=(x+140)(3x-20) | | 4n^2=20+24 | | X=140+3x+20 | | X=140+3x-20 | | -5w+-21=3(-3w+1) | | X=3x+20+140 | | 3x=x+20+140 | | 8-3x-2x=x+26 | | 125m-75m+48250=50500-200m | | 2(r+4)=6 | | X-9=+2-6x | | 1/3(9x+42)-5x=70 | | (3a+7)=(2a-1) | | -35=-5(a-8) | | -4y+6=-4(-4y+2) | | X+140=3(x+20) | | (X/2)+22=6x | | .5=(x/5000000) | | X+140=3x+20 | | 5/(x+4)=4+3/(x-2) | | 5x6=-14 | | 3=(15000000/x) | | X-20=3x+140 | | (X÷2)+22=6x | | 9+c=13 | | .2=(x/2500000) | | x=(x+140)(3x+20) | | -16+3/4x=-13 | | 3x-20=x+140 |